Statistics Terms | <stu ’tis tiks tRmz> | |
absolute error | <ab su ‘LOOt ‘eR R> | |
algebra | <‘aL ju bru> | |
algorithm | <‘aL gu Ri THum> | |
alternative | <oL ‘tR nu div> | |
analytical | <an u ‘Li di kuL> | |
approach | <u ‘pROch> | |
approximation | <u pRok su ‘mA shun> | |
association | <u sO sE ‘A shun> | |
assumption | <u ‘sump shun> | |
asymptotic | <a sim ‘tO dik> | |
auto-correlation | <‘o dO kOR u ‘LA shun> | |
Bayesian | <‘bA zE un> | |
bias (unbias) | <‘bI us> <‘un bI us> | |
binary | <‘bI ne RE> | |
biostatistics | <bI O stu ’tis tiks> | |
bootstrap | <‘bOOt stRap> | |
calculus | <‘kaL kEu Lus> | |
casualty | <‘ka zhOOuL tE> | |
coefficient | <kO u ‘fi shunt> | |
complete | <kum ‘pLEt> | |
computing | <kum ‘pEOO ding> | |
conditional | <kun ‘di shu nuL> | |
confident interval | <‘Kon fu dunt ‘in tR vuL> | |
constant | <‘kon stunt> | |
converge | <kun ‘vRj> | |
convolution | <kon vu ‘LOO shun> | |
corollary | <‘kOR u LeR E> | |
correlation | <KOR u ‘LA shun> | |
covariance | <kO ‘veR E uns> | |
covariate | <kO ‘veR E ut> | |
cross validation | <kRos va Lu ‘dA shun> | |
data | <‘dA du> < ‘da du> | |
deep learning | <dEEp ‘LR ning> | |
define | <di ‘fIn> | |
definition | <de fu ‘ni shun> | |
dependency | <di ‘pen dun sE> | |
derivation | <deR u ‘vA shun> | |
derivative | <dR ‘i vu tiv> | |
derive | <di ‘RIv> | |
differential | <di fR ‘en shuL> | |
dimension | <du ‘men shun> | |
diverge | <du ‘vRj> | |
efficiency | <i ‘fi shun sE> | |
equal | <‘E kOOuL> | |
estimate | <‘e stu mAt> <‘e stu mut> | |
estimation | <e stu ‘mA shun> | |
expectation | <eks pek ‘tA shun> | |
experimental design | <ek spi Ru ‘men tL di ‘zIn> | |
exponential | <eks pu ‘nen shuL> | |
expression | <ek ‘spRe shun> | |
fitting | <‘fi ding> | |
fixed effect | <fikst i ‘fekt> | |
forecast | <‘fOR kast> | |
formula | <‘fOR mEu Lu> | |
functional data | <‘fungk shu nL ‘dA du> | |
Gaussian | <‘goOO sE un> | |
generalized | <‘je nu Ru LIzd> | |
hypothesis test | <hI ‘po thu sus test> | |
identical | <I ‘den ti kuL> | |
imputation | <im pEu ‘tA shun> | |
independent | <in du ‘pen dunt> | |
inequality | <in i ‘KOOo Lu dE> | |
inference | <‘in fR uns> | |
infimum | <in ‘fu mum> | |
infinity | <in ‘fi nu dE> | |
integral | <‘in ti gRuL> | |
inverse | <‘in vRs> | |
kernel | <‘kR nL> | |
lemma | <‘Le mu> | |
likelihood | <‘LIk LE hood> | |
linear regression | <‘Li nE R Ri ‘gRe shun> | |
linearization | <Li nE R u ‘zA shun> | |
logistic | <Lu ‘jis tik> | |
logrithm | <‘Log Ri THum> | |
machine learning | <mu ‘shEn ‘LR ning> | |
marginal | <‘moR ju nuL> | |
matrices | <‘mA tRu sEz> | |
matrix | <‘mA tRiks> | |
maximum | <‘mak su mum> | |
mean | <mEn> | |
mechanism | <‘me ku ni zum> | |
median | <‘mE dE un> | |
minimum | <‘mi nu mum> | |
misspecification | <mis spe su fu ‘KA shun> | |
model | <‘mo duL> | |
moment | <‘mO munt> | |
Monte Carlo | <‘mon tE ‘koR LO> | |
multinomial | <muL tE ‘nO mE uL> | |
multivariate | <muL tE ‘veR E ut> | |
negative | <‘ne gu tiv> | |
negligible | <‘ne gLi ju bL> | |
neural network | <‘nR uL ‘net OORk> | |
nonparametric | <non peR u ‘me tRik> | |
normal distribution | <‘nOR muL dis tRu’bEOO shun> | |
observation | <ob zR ‘vA shun> | |
optimization | <op tu mu ‘zA shun> | |
outlier | <‘oOOt LI R> | |
parameter | <pu ‘Ra mu dR> | |
partition | <poR ‘ti shun> | |
percent | <pR ‘sent> | |
positive | <‘po zu tiv> | |
Possion | <‘po shun> | |
posterior | <pO ‘stiR E R> | |
predict | <pRi ‘dikt> | |
prediction | <pRi ‘dik shun> | |
principal component analysis | <‘pRin su pL kum ‘pO nunt u ‘na Lu sus> | |
prior | <‘pRI R> | |
probability | <pRo bu ‘bi Lu dE> | |
procedure | <pru ‘sE jR> | |
propensity score | <pRu ‘pen su dE skOR> | |
proportion | <pRu ‘pOR shun> | |
proof | <pROOf> | |
prove | <pROOv> | |
quadratic equation | <KOOo ‘dRa dik i ‘KOOA zhun> | |
quantile | <‘kOOon tIL> | |
random effect | <‘Ran dum i ‘fekt> | |
random forest | <‘Ran dum ‘fOR ust> | |
random variable | <‘Ran dum ‘veR E u bL> | |
randomization | <Ran du mu ’zA shun> | |
range | <RAnj> | |
rank | <Rangk> | |
record | <‘Re kRd> <RE ‘kORd> | |
relationship | <Ri ‘LA shun ship> | |
repeated measure | <Ri ‘pE dud ‘me zhR> | |
response | <Ri ‘spons> | |
robust | <RO ‘bust> | |
root of mean squared error | <ROOt uv mEn skOOeRD ‘eR R | |
sampling | <‘sam pLing> | |
sensitivity | <sen su ‘ti vu dE> | |
significant | <sig ‘ni fi kunt> | |
skew | <sKEOO> | |
sparse | <spoRs> | |
spatial | <‘spA shuL> | |
specificity | <spe su ‘fi su dE> | |
spline | <spLIn> | |
split plot design | <spLit pLot di ‘zIn> | |
standard error | <‘stan dRd ‘eR R> | |
statistics | <stu ’tis tiks> | |
stochastic | <stO ‘kas tik> | |
sufficient | <su ‘fi shunt> | |
supremum | <su ‘pRi mum> | |
survival analysis | <sR ‘vI vuL u ‘na Lu sus> | |
symmetric | <su ‘me tRik> | |
theorem | <‘thER Rum> | |
theory | <‘thER RE> | |
time series | <tIm ‘sER Ez> | |
transformation | <tRans fR ‘mA shun> | |
treatment | <‘tREt munt> | |
uniform | <‘U nu fORm> | |
univariate | <‘U ni veR E ut> | |
variance | <‘veR E uns> | |
vectorization | <vek tR i ‘zA shun> | |
visualization | <vi zhu OOu Lu ‘zA shun> | |
volatility | <vo Lu ’ti Lu dE> |